[빅데이터분석기사 실기] 하이퍼파라미터 튜닝 및 해석
1. 하이퍼파라미터 튜닝 from sklearn.model_selection import GridSearchCV / RandomizedSearchCV param = {'C': [...]} search = GridSearchCV(model, param, cv=5) / RandomizedSearch(model, param, cv=5) search.fit(X_train, y_train) search.best_params_ search.best_score_ 2. 결과 해석 from sklearn.metrics import roc_auc_score roc = roc_auc_score(y, pred) from sklearn.metrics import confusion_matrix confusion = confusi..